代码版本:Linux4.9 android-msm-crosshatch-4.9-android12
代码展示
static inline u64 scale_exec_time(u64 delta, struct rq *rq)
{
u32 freq;
// ⑴ 将 CPU cycles 转换为 CPU 当前频率
freq = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time);
// ⑵ 归一化 delta
delta = DIV64_U64_ROUNDUP(delta * freq, max_possible_freq);
delta *= rq->cluster->exec_scale_factor;
delta >>= 10;
return delta;
}
代码逻辑:
scale_exec_time()
函数用于给任务的运行时间 delta 进行归一化。
为什么归一化?
EAS 主要针对异构 CPU 架构,如 Arm big.LITTLE,因为这种架构有不同性能和功耗的 CPU 核心,不同 CPU 的最大算力、最大频率等都不同。假定一个任务在当前窗口中运行了 5ms,对不同频率的两个 CPU 来说,5ms 带来的负载是截然不同的。
WALT 算法引入了一种类似权重的方法,根据 CPU 的频率(frequency)和 最大每周期指令数(efficiency)来对任务的运行时间进行归一化。
(注:此处 efficiency 的定义并不确定,在内核文档中出现过这个定义。)
⑴ 将 CPU cycles 转换为 CPU 当前频率
freq = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time);
static inline u32 cpu_cycles_to_freq(u64 cycles, u64 period)
{
return div64_u64(cycles, period);
}
在这里 freq = rq->cc.cycles / rq->cc.time。其中,rq->cc.cycles 和 rq->cc.time 在函数 update_task_rq_cpu_cycles()
中更新:
static void
update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event,
u64 wallclock, u64 irqtime)
{
u64 cur_cycles;
int cpu = cpu_of(rq);
lockdep_assert_held(&rq->lock);
if (!use_cycle_counter) {
rq->cc.cycles = cpu_cur_freq(cpu);
rq->cc.time = 1;
return;
}
cur_cycles = read_cycle_counter(cpu, wallclock);
/*
* If current task is idle task and irqtime == 0 CPU was
* indeed idle and probably its cycle counter was not
* increasing. We still need estimatied CPU frequency
* for IO wait time accounting. Use the previously
* calculated frequency in such a case.
*/
if (!is_idle_task(rq->curr) || irqtime) {
if (unlikely(cur_cycles < p->cpu_cycles))
rq->cc.cycles = cur_cycles + (U64_MAX - p->cpu_cycles);
else
rq->cc.cycles = cur_cycles - p->cpu_cycles;
rq->cc.cycles = rq->cc.cycles * NSEC_PER_MSEC;
if (event == IRQ_UPDATE && is_idle_task(p))
/*
* Time between mark_start of idle task and IRQ handler
* entry time is CPU cycle counter stall period.
* Upon IRQ handler entry sched_account_irqstart()
* replenishes idle task's cpu cycle counter so
* rq->cc.cycles now represents increased cycles during
* IRQ handler rather than time between idle entry and
* IRQ exit. Thus use irqtime as time delta.
*/
rq->cc.time = irqtime;
else
rq->cc.time = wallclock - p->ravg.mark_start;
BUG_ON((s64)rq->cc.time < 0);
}
p->cpu_cycles = cur_cycles;
trace_sched_get_task_cpu_cycles(cpu, event, rq->cc.cycles, rq->cc.time, p);
}
⑵ 归一化 delta
-
delta = DIV64_U64_ROUNDUP(delta * freq, max_possible_freq);
即 delta = delta * freq/max_possible_freq。freq 是当前 CPU 的频率,由 ⑴ 计算而得:freq = rq->cc.cycles / rq->cc.time。
max_possible_freq 就是 max(policy->cpuinfo.max_freq)。
policy 可以浅显地认为是簇号,如不同的 policy 指向小核簇、大核簇和超大核:- 对于拥有多个 CPU 的簇来说,频率的计算在 sugov_update_shared() 中进行,簇内每个 CPU 的频率都是一致的,因此一个簇会拥有一个当前频率和一个最大频率,即 policy->cpuinfo.max_freq;
- 对于单个 CPU 来说,频率的计算在 sugov_update_single() 中进行,它也会有一个最大频率 policy->cpuinfo.max_freq。
在运行该版本内核的 pixel 3xl 中,8 个 CPU 分为小核簇与大核簇,他们的最大频率分别是 381 和 1024。
-
delta *= rq->cluster->exec_scale_factor;
cluster->exec_scale_factor = 1024 * cluster->efficiency/max_possible_efficiencycluster->efficiency 可能指 运行任务的 CPU 的每周期指令数 (IPC)。
max_possible_efficiency 可能指 系统中任何 CPU 提供的最大 IPC。
这个值在设备树中给定,在运行该版本内核的 pixel 3xl 中,小核簇和大核簇的 max_possible_efficiency 分别是 1024 和 1740。 delta >>= 10;
即 delta = delta / 1024。
将三句代码一起看,能得出一个等式: